
Parallel Bounded Property Checking withSymC ⋆

Pradeep K. Nalla, Roland J. Weiss, Jürgen Ruf, Thomas Kropf, and Wolfgang Rosenstiel

Wilhelm-Schickard-Institut f̈ur Informatik, Universiẗat Tübingen
Sand 13, 72076 T̈ubingen, Germany

{nalla,weissr,ruf,kropf,rosenstiel}@informatik.uni-tuebingen.de

Abstract. Today, verification of industrial size designs like multi-million gate ASICs (Application
Specific Integrated Circuit) and SoC (System-on-a-Chip) processorsconsumes up to 75% of the de-
sign effort. The trend to augment functional verification with formal verification tries to alleviate this
problem. Efficient property checking algorithms based on binary decision diagrams (BDDs) and sat-
isfiability (SAT) solvers allow automatic verification of medium-sized designs. However, the steadily
increasing design sizes still leave verification the major bottleneck, because formal methodologies do
not yet scale to very large designs.
To address these problems, we developed the bounded property checking tool SymC. SymC takes
properties and a system description as inputs and translates them into a symbolically simulatable repre-
sentation.SymC performs forward state space traversal for verifying the properties. However, for larger
designsSymC cannot complete the traversal due to the state space explosion problem.
Therefore, we propose a parallel version ofSymC. The main idea of our approach is to split the state set
into partitions and delegate traversal of these subsets to nodes on a clustercomputer. Depending on the
property and the quantification operator, detecting an accepting or rejecting state on one node can im-
mediately abort computation on all other nodes and a witness/counterexample is produced. Otherwise,
only the current search path is terminated and the remaining paths are traversed further. Parallel compu-
tation shows approximately linear speedups in execution time, enables faster verification of properties
and we are able to handle larger designs.

1 Introduction

Formal verification is increasingly important in the designprocess of large circuits. The
two most widely used formal verification techniques are symbolic model checking based
on state space traversal using BDDs [1, 2] and bounded model checking (BMC) using
satisfiability (SAT) solvers [3]. The idea of BMC is to unroll the sequential circuit intok
time-frames, and counterexamples are searched in this unrolled system description. If no
bug is found then one increasesk until either a bug is found or some defined upper bound
is reached. The BMC problem can be efficiently reduced to a propositional satisfiability
problem. However, BMC works well for errors that are not too deep, i.e. not far from the
initial states. For deep errors, the favorable option is state space traversal using BDDs.
BDDs provide a canonical and compact symbolic representation of a Boolean function.
In many cases BDDs can represent a large number of states very compactly and allow
the verification and synthesis of systems having large statespaces [4]. But this technique
faces the state space explosion problem as the design gets larger. In general, the size of the
state space grows exponentially in the number of state elements present in the design. For
some large designs BDD-based symbolic techniques do not allow complete analysis of
the state space due to very deep errors. Further, BDDs are unstable, i.e. the performance
of BDDs is sensitive to several parameters in constructing BDDs. The variable ordering
plays a major role in deciding the size of BDDs. Small changes in parameters can yield
significant variations in a BDD’s memory requirements.

⋆ This work has been funded in part by the German Research Council (DFG) within projects GRASP and KOMFORT
and by the BMBF and edacentrum within project FEST.

To address the above problems we propose a method to parallelize the task of bounded
property checking. In contrast to a classical model checker, our bounded property checker
SymC performs one forward image computation at a time, i.e. the current set of states1

is replaced by the set of states reachable within one transition. This results in an efficient
verification for properties with time bounds by avoiding fixpoint iterations and reachable
state set computations. However, for some bigger models computations usingSymC re-
quire a lot of memory and also face the BDD explosion problem.

One proposed solution to the state explosion problem is partitioning the state space
upon reaching a certain threshold and exploring each partition sequentially one at a time,
while other partitions are kept in external memory [4, 5]. Our work is similar to this ap-
proach but all the partitions are explored simultaneously in a parallel framework.

Our approach parallelizes the symbolic state space traversal on a network of proces-
sors that communicate via the message passing paradigm. First, we start traversal in the set
of initial states and iteratively compute the frontier set until Scurr reaches a given thresh-
old size. ThenScurr is partitioned into subsets, where each subset is assigned to one node
of the cluster computer. As soon as a node has its subset, it proceeds to compute forward
state space traversal in iterative BFS (Breadth First Search)steps. In general, computa-
tion on a smaller subset requires less memory compared to thewhole set. This method
enables us to find errors that are far from the initial states.We can analyze bigger designs
than with sequentialSymC. Moreover, parallel computation takes less verification time
compared to the partitioned sequential approach.

The remaining paper is organized as follows. Section 2 describes time bounded prop-
erty checking inSymC and the motivation for parallelization ofSymC. Section 3 de-
scribes parallel bounded property checking usingSymC and also presents the two core
algorithms executing on the master and slave nodes. Section4 explains partitioning and
the partition heuristics we considered in our work. Experimental results are presented in
Section 5. Section 6 concludes and discusses future work.

2 SymC

The formal verification toolSymC [6, 7] combines bounded property checking and sym-
bolic traversal. It takes a system description either as Verilog gate list or as a simple
SMV-like [8] finite state description and temporal expressions in PSL (Property Spec-
ification Language) foundation language or FLTL (Finite Linear time Temporal Logic)
[9]. The temporal logic formulas are converted to special finite state machines called AR-
automata [10]. LaterSymC translates both the system description and AR-automata into
a BDD form. In order to avoid the construction of the complete transition relation we use
a set of conjunctive partitioned transition relations.SymC traverses the design and the
properties simultaneously and observes the state of the properties and reports success or
failure to the user.

2.1 The Checking Algorithm of SymC

Our bounded property checking algorithm works in two steps.In the first step we compute
the successor states of the AR-automata and we check whether aformula is accepted or

1 Throughout the paperScurr represents the current state set.

rejected. In the second step of each iteration we perform onesymbolic execution step on
the system under inspection. During image computation we build the conjunction of all
partitions on-the-fly to obtain the successor state set. Fig. 1 shows the general operation
of SymC.

Translation to formal

representation

Translation to

AR-automata

Symbolic

execution

unit

System

description

Property

description

Accept/reject

properties

SymC

Fig. 1.Overview ofSymC operation.

Similar to bounded model checking we do not traverse the state space exhaustively
but from a given start set we examine all states reachable up to a given time bound, which
is either given explicitly by the user or implicitly by the property.

2.2 Motivation for Parallelization of SymC

SequentialSymC partitionsScurr into smaller subsets when the BDD reaches a cer-
tain threshold size. Then, it explores these subsets sequentially. Once it reaches an ac-
cept/reject state, according to the existential/universal quantification of a property,SymC
can save time and space by skipping exploration of the rest ofthe partitions. Assume, our
design is error free or the reject state can be reached only inthe final partition. Then we
have to explore all the partitions, which is a time consumingprocess.

Let n be the number of partitions,ti the time it takes for partitioni to traverse fully,
andmax(ti) the maximum time taken by a partition for exploration of its state space. Then∑n

i=1
ti is the time taken for full exploration of the system’s state space.

Let aj (rj) be the time it takes to reach an accept (reject) state in partition j. For
the rest of the text, we only talk about reject states withoutloss of generality. Suppose
the partitions are scheduled such that we are reaching the reject state in partitionj, then
rj +

∑j−1

i=1
ti is the time taken by the sequential algorithm to reach the reject state.

Let R = {P1, . . . , Pk} be the set of partitions from which one can reach the reject
state andmin(Pi) the minimum time taken by a partition to reach the reject state. When
all partitions are executed in parallel, the time taken for exploration of the whole state
space ismax(ti) and the fastest reachability of the reject state is achievedin min(Pi). In
the sequential approach it may happen that partitionsPi /∈ R are explored unnecessarily
as they can not reach the reject state. Even if we reach the reject state, it may not be
the partition which takes the least time to reach the reject state that is explored first. The
explanation of splitting sets into partitions is postponedto section 4.

In comparison to sequentialSymC, the parallel approach has these two main advan-
tages because it requires less memory on each node:

1. It allows faster verification of properties. This is not only true because of the reduced
memory requirements, but also because the parallel algorithm is not sensitive to the
scheduling of partition traversal.

2. The parallel tool can traverse further into large systemswhere the sequential algorithm
fails due to memory exhaustion.

3 Parallelization of the Bounded Property Checking Algorithm

In this section we describe bounded property checking in parallel. Before getting into the
details of our core algorithms we discuss how transmission of BDDs and communication
between network nodes is handled.

For BDD transmission we use the available network drives and the DDDMP package
of the CUDD library [11]. BDD serialization is performed in binary form. In binary mode,
the BDD nodes are a sequence of bytes, representing the variable index, Then-index, and
Else-index in an optimized way. While receiving, depending on this index information we
can again frame the original BDD. For network communication we use TPO++ [12], an
object oriented message-passing library written in C++ on top of MPI (Message Passing
Interface) [13]. TPO++ allows easy transmission of objectsand supports STL data types.

The nodes of a cluster computer are categorized into one master and otherwise slave
nodes. First, the master node parses the system descriptionand property specification and
translates them into BDD form. These are basically the transition relation of the system
and the properties’ AR-automata. Once the master node has generated the BDDs, it dumps
these BDDs onto disk and broadcasts the availability of the transition relation and AR-
automata to the slave nodes, which are waiting for this eventto occur. After successful
message transmission, the master starts its symbolic statetraversal algorithm, whereas the
slaves will remain in waiting state after loading the BDDs from disk. The property check-
ing algorithm for the master continues until the size ofScurr reaches the initial threshold
limit. At this point, it storesScurr on disk and indicates the slaves to load this set and
split it. The main reason for doing this is to reduce the splitting time and distribute the
splitting effort on all nodes in the network. In detail, the master node can splitScurr into n
subsets. But this process consumes notable amount of time andsplitting Scurr in parallel
yields better results. Depending on the node rank2, each node splitsScurr and obtains its
subset. We restrict ourselves for better memory balancing to n nodes, wheren = 2k and
k ∈ {1, 2, 3, . . . }.

Fig. 2 illustrates the initial state set distribution algorithm. It iteratively splits a state
setS into two parts and drops one of the resulting sets. In the end it keeps the subset
that belongs to the node identified by its rank. The left hand side of Fig. 2 shows the
distribution algorithmgetSubset. It returns the subsetSrank for noderank from setS for
n possible nodes. It calls algorithmsplit that partitions a setS into two disjunct subsets
g andh. An example application ofgetSubset(S, 8, 5, Srank) is shown on the right side
of Fig. 2. The algorithm iterateslog2(8) = 3 times. First, it splitsS into g andh and
updatesSrank with g and skipsh. Second, the algorithm splitsSrank and updatesSrank with
h and skipsg. Third, it splitsSrank and setsSrank to g and skipsh. The control flow of this
example is indicated by the bold arrows in the figure.

After the assignment of the state subsets to each node, all nodes will proceed with
forward state space traversal. Whenever one of the nodes detects the termination condi-
tion, it initiates abortion of the other nodes and optionally indicates the master node to

2 In MPI each node is identified by a unique number called rank.

// get subset for rank with n nodes from set S

getSubset(in: S, n, rank; out: Srank)

 Srank = S;

for i = 1 … log2(n)

 split(Srank; g, h);

if (rank % 2) Srank = g; // skip h for odd rank

else Srank = h; // skip g for even rank

 rank = rank / 2;

// split state set S into two parts g and h

split(in: S; out: g, h)

Srank

Srank = g

Srank = h

Srank = g

g

h

g

skip h

skip h

skip g

Fig. 2. Algorithm for state set distribution. The left hand side contains the distributionalgorithms, an example applica-
tion is shown on the right hand side.

compute the witness/counterexample. The left and right hand sides of Fig. 3 delineate the
master and slave node computation loops, respectively. Thetermination condition in the
inner loop is a generalization of the one given in [14] for distributed computing.

4 Splitting

When we work with parallelSymC and the size ofScurr is small, then many initial steps
of state space traversal are identical to sequentialSymC, i.e. Scurr can be represented
using a single BDD and partitioning is delayed. Traversal is performed until a blow up
in BDD size is detected. Blow up can be detected by measuring thesize of the symbolic
representation ofScurr. After a blow up is detected, we perform state set splitting based
on the BDD variables representingScurr. The goal of partitioning is to create small and
relatively balanced partitions. They should be disjoint inorder to avoid the duplication of
work. Since state sets are represented as Boolean functions our partitioning is based on
Boolean function slicing [4, 15, 5].

We experimented with several splitting algorithms, both with our own and already
publicized heuristics [15, 16, 11]. Most of the partitioning algorithms are based on split-
ting a Boolean function represented as BDD into two parts depending on a variable,
i.e. Shannon expansion is applied. Iff is a function represented using a BDD andx is
one of its variables, thenf can be split intofx = f ∧ x andfx̄ = f ∧ x̄. The variable is
chosen to balance the sizes of the two resulting functions and to keep them small. We will
explain the heuristics for selecting a variable below.

4.1 Partitioning Algorithms from Literature

First we discuss the algorithms we considered from references.Heavy branch subsetting
andshort path subsetting are mentioned in [16]. Theheavy branch subsetting algorithm
computes a dense subset from a BDD. It determines how many states are in the function
rooted at each internal node and builds a subset by throwing away one of the children of
each node, starting from the root, until the result reaches agiven threshold. The child that
is eliminated from the result is the one that contributes fewer states. Whereas inshort path
subsetting, the main idea is that short paths in a BDD give many states and contribute few

// distribute the transition relation and AR-automata // receive the transition relation and AR-automata
sendTrans(); receiveTrans();
sendAR-Automata(); receiveAR-Automata();

symbolicSimulate() symbolicSimulate()
N = nodesInCommWorld; N = nodesInCommWorld;
Scurr = Sys.start∧ AR-aut.start; waitForCurrentStateSet();
splitFlag= true; Scurr = getSubset(Scurr, N, rank);
for i = 0 ... k // k is the time bound // n is the time point of the initial partitioning

checkAbortCondition(); // and k is the time bound
if ((|Scurr | ≥ threshold)∧ (splitFlag)) for i = n ... k

distributeCurrentStateSet(); checkAbortCondition();
Scurr = getSubset(Scurr, N, rank); // Compute image of AR-Automata.
splitFlag= false; Scurr = imageAR(Scurr);

// Compute image of AR-Automata. if (check Universally)
Scurr = imageAR(Scurr); if (Scurr ∧ AR.reject6= false)
if (check Universally) reportFailure();

if (Scurr ∧ AR.reject6= false) abortOtherNodes();
reportFailure(); if (Scurr ∧ AR.accept= Scurr)
abortSlaveNodes(); reportAcceptance();

if (Scurr ∧ AR.accept= Scurr) if (check Existentially)
reportAcceptance(); if (Scurr ∧ AR.accept6= false)

if (check Existentially) reportAcceptance();
if (Scurr ∧ AR.accept6= false) abortOtherNodes();

reportAcceptance(); if (Scurr ∧ AR.reject= Scurr)
abortSlaveNodes(); reportRejectance();

if (Scurr ∧ AR.reject= Scurr) // Compute image of system.
reportRejectance(); Scurr = imageT (Scurr);

// Compute image of system.
Scurr = imageT (Scurr);

Fig. 3.Master and slave node main computation loops.

nodes. The algorithm computes the short paths through each node and extracts the dense
subset by removing the nodes with no short paths through them. These two algorithms
work better for sequentialSymC, i.e. whenever the size ofScurr reaches the threshold
limit we apply one of these two algorithms and first traverse the dense subset, keeping the
remaining state space on a stack. These algorithms are of minor interest in parallelSymC
as they result in unbalanced cluster nodes in terms of memoryand computation power
consumption.

The other algorithms arevariable disjunctive decomposition andgenerative disjunc-
tive decomposition from [11]. These algorithms are similar to our algorithms but consume
more time for decomposition. They try to estimate all the variables’ positive and negative
co-factors and take the best one. The final algorithm [15] takes reduction and redundancy
factors into account for giving a better decomposition of a BDD but also consumes a
notable amount of time.

4.2 New Splitting Heuristics

Compared to the above algorithms, our first algorithm tries toselect a variable for which
its positive and negative co-factors are well balanced according to a balancing condition.
If it can not find such a variable, it picks the variable resulting in the least difference in
the sizes of its positive and negative co-factors. Since we eagerly check for the variable
that satisfies the balancing condition we call this algorithm eager decomposition. That

is whenever we find an appropriate variable, we skip the exploration of the remaining
variables.

selectVariable(in: S; out: bestVar)
bestDiff = |S|; // initialize with number of BDD nodes of S

for all xi // xi ∈ S.support()

balance =
|fxi

|

|fx̄i
|
;

// balancing condition
if (0.75≤ balance≤ 1.25)

bestVar =xi;
break;

// otherwise check if variable is better than current one
diff = abs(|fxi

| − |fx̄i
|);

if (diff < bestDiff)
bestDiff = diff;
bestVar =xi;

Fig. 4.Variable selection foreager decomposition.

After partitioning, each node is assigned with its state subset for symbolic state space
traversal. A very important observation is that after a few steps of traversal, it may happen
that there is a state overlap between network nodes.

Definition 1 Let S be a set represented using a BDD. Then‖S‖ denotes the number of
states inS, which is given by the number of minterms of the BDD.

Definition 2 Let S be a set andP1, . . . , Pn ⊆ S. Then we define the state overlap
o ∈ [0, 1] as:

o =
‖{p ∈ S : p ∈ Pi ∩ Pj, 1 ≤ i, j ≤ n ∧ i 6= j}‖

‖
⋃n

i=1
Pi‖

(1)

Keeping this in mind, we developed the heuristicminimal overlap that aims at min-
imizing the state overlap. This should reduce the effort spent on the network nodes, as
redundant computations are avoided.

We rely on the fact that the transition relation is conjunctively partitioned. All these
partitions are statically analyzed to find dependencies between the state variables. First,
we determine the number of present state variables that influence the truth value of a next
state variable. Next, we order the state variables according to this dependency count. The
variables with the highest dependency count are selected for splitting. The crucial point
behind theminimal overlap heuristic is that if splitting is done on one of the selected
variables, then image computations in these partitions areless likely to produce the same
truth values in the dependent next state variables.

Often, the selected variable can not partitionScurr into balanced subsets. In order to
overcome this problem, the best-cost algorithm [15] is called with the set of selected
variables. It returns one variable for achieving a reasonably balanced partitioning.

Of course, in the worst case the minimal overlap condition holds only for one or
few traversal steps, as many other conditions can change thevalue of state variables.
For example, the variable with the maximal dependency countcan depend on an input

variable disjunctively. The selected set of variables is further scrutinized to avoid such
trivial situations.

5 Experimental Results

We performed our experiments on the Kepler cluster at the University of Tuebingen. This
cluster contains 128 computing nodes, each consisting of dual 650 MHz Pentium 3 pro-
cessors with 1 GB of memory. The communication between nodesconsists of a Myrinet
1.28 GBit/s switched LAN. The SCore Cluster System Software is used for communica-
tion between network nodes. We conducted our experiments onsome of the circuits from
the ISCAS89 benchmarks, and a model of the holonic productionsystemnh2 described
in [9]. We compared the results of parallelSymC and sequentialSymC.

Checked properties For circuits from the ISCAS89 benchmarks we check for reacha-
bility of a certain state. In the holonic production system we check for consumption of a
workpiece. The properties are specified with time bounds.

Partitioning Algorithms Since some of the partitioning algorithms have similar charac-
teristics, for examplevariable disjunctive decomposition andgenerative disjunctive de-
composition, we performed our experiments with a subset of the algorithms specified in
section 4. Due to the reason given in section 4.1, none of the dense approximation tech-
niques have been used for the parallel version ofSymC. The heuristic from [15] is labeled
Haifa decomposition.

Fig. 5 shows the results of running the mentioned circuits inpartitioned sequentialSymC
and parallelSymC. The first column indicates the circuit names. The columnthreshold
limit indicates that whenever the size ofScurr reaches this limit, the given splitting al-
gorithm is called. The third column represents the time bound specified in a property.
Columntime specifies the time in seconds taken by an approach to reach thetime bound
or to get results. For parallelSymC, we also mention the number of nodes used in the
cluster computer.

Discussion In Fig. 5 the runtimes marked with bold text denote the splitting algorithm
yielding the best result. For circuitnh2, the parallel approach using 16 nodes can not
complete traversal in one hour due to the huge state overlap between network nodes.
However, with 32 nodes parallelSymC decreases the verification time by a factor from
3 to 5. For the larger ISCAS89 circuitss1512 ands4863 sequentialSymC was not able
to produce any results with most splitting algorithms, whereas parallelSymC traversal
completes and we obtain results.

6 Conclusion and Future Work

In this paper we presented a parallel version of the bounded property checking toolSymC
and successfully tested big designs with large time bounds.The idea of the approach is
to partition the state space upon reaching a threshold limitand assign traversal of the

Time taken by nr. of

nodes
Time

Circuit
Threshold

Limit

Time

Bound
Partitioning Algorithm

16 32 Seq.

VarDisjDecomp mtaoh 204.06 741.95

MinimalOverlap mtaoh 197.38 539.01

EagerDecomp mtaoh mtaoh 591.84

HaifaDecomp mtaoh 208.5 902.05

300

HeavyBranchSubset 452.21

VarDisjDecomp mtaoh 375.77 mtaoh

MinimalOverlap mtaoh 379.74 1273.29

EagerDecomp mtaoh mtaoh 2489.54

HaifaDecomp mtaoh 272.25 2332.3

1000

HeavyBranchSubset 1242.65

VarDisjDecomp mtaoh 450.5 mtaoh

MinimalOverlap mtaoh 566.15 1738.11

EagerDecomp mtaoh mtaoh 3195.98

HaifaDecomp mtaoh 357.29 3074.1

nh2

50000

2000

HeavyBranchSubset 1824.18

VarDisjDecomp 2146.25 2103.45 mtaoh

MinimalOverlap 2135.46 2083.24 mtaoh

EagerDecomp 2772.98 2750.55 mtaoh

HaifaDecomp 2450.75 2363.23 mtaoh

s1512 50000 100

HeavyBranchSubset mtaoh

VarDisjDecomp 30.34 21.74 mtaoh

MinimalOverlap 41.79 22.88 168.92

EagerDecomp 36.01 31.67 307.81

HaifaDecomp 32.32 22.58 182.67

s1269 5000 10

HeavyBranchSubset 213.38

VarDisjDecomp 215.12 203.69 519.35

MinimalOverlap 243.79 233.02 503.5

EagerDecomp 245.73 224.2 746.25

HaifaDecomp 303.73 293.88 503.62

s1423 50000 10

HeavyBranchSubset 585.48

VarDisjDecomp 952.22 813.69 mo

MinimalOverlap 714.49 579.86 1786.88

EagerDecomp mo mo mo

HaifaDecomp 967.95 851.39 mo

s4863 20000 5

HeavyBranchSubset 2802.77

Fig. 5.Comparison of parallelSymC with partitioned sequentialSymC, wheremtaoh denotes measurement terminated
after one hour andmo denotes memory overflow.

subsets to network nodes. The parallel algorithm has several advantages. It enables the
verification of larger models than those with the regular nonparallel version. Sequential
SymC fails for these designs because it often encounters state space explosion early on in
the computation, after which it could not make much progressdue to memory limitations.
However, the reduced memory requirements for the cluster nodes in parallelSymC still
allow progress in the traversal process. Therefore, it is able to finish large circuits. The
parallel approach can exploit any network size and its utilization of network resources
make it suitable for solving very large verification problems. Also, because parallelSymC
is not sensitive to the traversal scheduling order of partitions, the termination condition is
found as soon as possible.

Our current focus is on state overlap reduction. In this workwe reduced the state over-
lap between network nodes using theminimal overlap algorithm for state set splitting.
Experiments show that this technique efficiently reduces the overlap for certain circuits.
However, in general the overlap may still pursue after a few iterations. In order to dynam-
ically avoid overlap, each node dumps itsScurr everyn time steps onto the disk. Later
nodes will remove the states already visited at time stepn by other nodes. As of the time
of writing this paper, we are ready with the basic implementation and tested a few designs.
Early results look very promising.

Currently, we partitionScurr into smaller subsets and distributed them among network
nodes. We would like to apply the same principle to the transition relation, i.e. we dis-
tribute restricted parts of the transition relation to the network nodes. In contrast to [15]
we use network drives for BDD transmission. In the future we will evaluate using MPI
directly for BDD transmission.

References

1. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on ComputersC-35
(1986) 677–691

2. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys
24(3)(1992) 293–318

3. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. In Zelkowitz, M., ed.:
Highly Dependable Software. Volume 58 of Advances in Computers. Academic Press (2003)

4. Narayan, A., Isles, A.J., Jain, J., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Reachability analysis using
partitioned-ROBDDs. In: 1997 IEEE/ACM International Conference onCAD, ACM and IEEE Computer So-
ciety Press (1997) 388–393

5. Sahoo, D., Iyer, S.K., Jain, J., Stangier, C., Narayan, A., Dill,D.L., Emerson, E.A.: A partitioning methodology
for BDD-based verification. In Hu, A.J., Martin, A.K., eds.: Formal Methods in Computer-Aided Design, Fifth
International Conference. Volume 3312 of Lecture Notes in Computer Science., Springer (2004) 399–413

6. Ruf, J., Peranandam, P.: Bounded property checking with symbolic simulation. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen undSystemen, GI/ITG/GMM Workshop,
Shaker Verlag (2003) 209–218

7. Peranandam, P.M., Weiss, R.J., Ruf, J., Kropf, T., Rosenstiel, W.: Dynamic guiding of bounded property checking.
In: IEEE International High Level Design Validation and Test Workshop2004 (HLDVT 04). (2004)

8. McMillan, K.: Symbolic Model Checking: An Approach to the State Explosion Problem. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA (1992) CMU-CS-92-131.

9. Ruf, J., Weiss, R.J., Kropf, T., Rosenstiel, W.: Modeling and formal verification of production automation systems.
In et. al., E., ed.: Integration of Software Specification Techniques for Applications in Engineering. Volume 3147
of Lecture Notes in Computer Science. Springer (2004) 541–566

10. Ruf, J., Hoffmann, D.W., Kropf, T., Rosenstiel, W.: Simulation-guided property checking based on a multi-valued
AR-automata. In Nebel, W., Jerraya, A., eds.: Design, Automation and Test in Europe 2001, IEEE Press (2001)
742–748

11. Somenzi, F.: CUDD: CU decision diagram package, release 2.4.0. http://vlsi.colorado.edu/∼fabio/
CUDD (2004)

12. Grundmann, T., Ritt, M., Rosenstiel, W.: TPO++: An object-orientedmessage-passing library in c++. In: 2000
International Conference on Parallel Processing, IEEE Computer Society (2000) 43–50

13. William Gropp, E.L., Skjellum, A.: Using MPI - Portable Parallel Programming with the Message Passing Inter-
face. 2nd edn. MIT Press (1999)

14. Ruf, J., Peranandam, P.M., Kropf, T., Rosenstiel, W.: Bounded property checking with symbolic simulation. In:
Forum on Specification and Design Languages 2003. (2003)

15. Heyman, T., Geist, D., Grumberg, O., Schuster, A.: Achieving scalability in parallel reachability analysis of very
large circuits. In Emerson, E.A., Sistla, A.P., eds.: Computer Aided Verification, 12th International Conference.
Volume 1855 of Lecture Notes in Computer Science., Springer Verlag (2000) 20–35

16. Ravi, K., McMillan, K.L., Shiple, T.R., Somenzi, F.: Approximationand decomposition of binary decision dia-
grams. In: 35th Conference on Design Automation, ACM Press (1998)445–450

