Parallel Bounded Property Checking withSymC *

Pradeep K. Nalla, Roland J. Weisgrden Ruf, Thomas Kropf, and Wolfgang Rosenstiel

Wilhelm-Schickard-Institutiir Informatik, Universiét Tubingen
Sand 13, 72076 dbingen, Germany
{nal I a, wei ssr, ruf, kropf, rosenstiel }@nformati k. uni -tuebi ngen. de

Abstract. Today, verification of industrial size designs like multi-million gate ASICs f§liqation
Specific Integrated Circuit) and SoC (System-on-a-Chip) processmsumes up to 75% of the de-
sign effort. The trend to augment functional verification with formaifieation tries to alleviate this
problem. Efficient property checking algorithms based on binary wecdiagrams (BDDs) and sat-
isfiability (SAT) solvers allow automatic verification of medium-sized desigtmvever, the steadily
increasing design sizes still leave verification the major bottleneck, bedatmal methodologies do
not yet scale to very large designs.

To address these problems, we developed the bounded properiinchémol SymC. SymC takes
properties and a system description as inputs and translates them into@isgtiysimulatable repre-
sentationSymC performs forward state space traversal for verifying the propekHiewever, for larger
designsSymC cannot complete the traversal due to the state space explosion problem.
Therefore, we propose a parallel versiorsgiC. The main idea of our approach is to split the state set
into partitions and delegate traversal of these subsets to nodes on a@umsparter. Depending on the
property and the quantification operator, detecting an accepting or rgjestéite on one node can im-
mediately abort computation on all other nodes and a witness/countgrkexsnproduced. Otherwise,
only the current search path is terminated and the remaining paths aesedyurther. Parallel compu-
tation shows approximately linear speedups in execution time, enablesvstieation of properties
and we are able to handle larger designs.

1 Introduction

Formal verification is increasingly important in the desmocess of large circuits. The
two most widely used formal verification techniques are sgicimodel checking based
on state space traversal using BDDs [1, 2] and bounded moeekiig (BMC) using
satisfiability (SAT) solvers [3]. The idea of BMC is to unrdfig sequential circuit inté
time-frames, and counterexamples are searched in thideoheystem description. If no
bug is found then one increasesintil either a bug is found or some defined upper bound
is reached. The BMC problem can be efficiently reduced to aqsitipnal satisfiability
problem. However, BMC works well for errors that are not toepld.e. not far from the
initial states. For deep errors, the favorable option itestpace traversal using BDDs.
BDDs provide a canonical and compact symbolic representati@ Boolean function.
In many cases BDDs can represent a large number of states eenyactly and allow
the verification and synthesis of systems having large sfzees [4]. But this technique
faces the state space explosion problem as the design gges la general, the size of the
state space grows exponentially in the number of state elesnpeesent in the design. For
some large designs BDD-based symbolic techniques do nat abbonplete analysis of
the state space due to very deep errors. Further, BDDs aragblmste. the performance
of BDDs is sensitive to several parameters in constructing BDie variable ordering
plays a major role in deciding the size of BDDs. Small changgsarameters can yield
significant variations in a BDD’s memory requirements.

* This work has been funded in part by the German Research Couf@)@ithin projects GRASP and KOMFORT
and by the BMBF and edacentrum within project FEST.

To address the above problems we propose a method to paeailed task of bounded
property checking. In contrast to a classical model checkerhounded property checker
SymcC performs one forward image computation at a time, i.e. threeot set of statés
is replaced by the set of states reachable within one transithis results in an efficient
verification for properties with time bounds by avoiding fpt iterations and reachable
state set computations. However, for some bigger modelguatations usinggymcC re-
quire a lot of memory and also face the BDD explosion problem.

One proposed solution to the state explosion problem istipaihg the state space
upon reaching a certain threshold and exploring each jpersequentially one at a time,
while other partitions are kept in external memory [4, 5]r@uwrk is similar to this ap-
proach but all the partitions are explored simultaneousky parallel framework.

Our approach parallelizes the symbolic state space tr@vensa network of proces-
sors that communicate via the message passing paradigiyvierstart traversal in the set
of initial states and iteratively compute the frontier setiluSc, reaches a given thresh-
old size. Therbgyr is partitioned into subsets, where each subset is assigratetnode
of the cluster computer. As soon as a node has its subsebcié@ds to compute forward
state space traversal in iterative BFS (Breadth First Seatepy. In general, computa-
tion on a smaller subset requires less memory compared tatibée set. This method
enables us to find errors that are far from the initial stadscan analyze bigger designs
than with sequentiabymC. Moreover, parallel computation takes less verificatiometi
compared to the partitioned sequential approach.

The remaining paper is organized as follows. Section 2 de=ctime bounded prop-
erty checking inSymC and the motivation for parallelization &mC. Section 3 de-
scribes parallel bounded property checking ussygnC and also presents the two core
algorithms executing on the master and slave nodes. Set#aplains partitioning and
the partition heuristics we considered in our work. Experial results are presented in
Section 5. Section 6 concludes and discusses future work.

2 SymC

The formal verification tooBymC [6, 7] combines bounded property checking and sym-
bolic traversal. It takes a system description either asldgegate list or as a simple
SMV-like [8] finite state description and temporal expressi in PSL (Property Spec-
ification Language) foundation language or FLTL (Finite éan time Temporal Logic)

[9]. The temporal logic formulas are converted to specididistate machines called AR-
automata [10]. LateBymC translates both the system description and AR-automata into
a BDD form. In order to avoid the construction of the compleamsition relation we use

a set of conjunctive partitioned transition relatio®ymC traverses the design and the
properties simultaneously and observes the state of thpegres and reports success or
failure to the user.

2.1 The Checking Algorithm of SymC

Our bounded property checking algorithm works in two stépthe first step we compute
the successor states of the AR-automata and we check whefibven@a is accepted or

! Throughout the papeScurr represents the current state set.

rejected. In the second step of each iteration we perfornspmdolic execution step on
the system under inspection. During image computation vild the conjunction of all
partitions on-the-fly to obtain the successor state set.IFghows the general operation
of SymcC.

System | Translation to formal SymC

description representation | & Symbolic
execution >

Property , Translation to __» unit /

description AR-automata

Accept/reject
properties

Fig. 1. Overview of SymC operation.

Similar to bounded model checking we do not traverse the sjaace exhaustively
but from a given start set we examine all states reachable agitven time bound, which
Is either given explicitly by the user or implicitly by theqperty.

2.2 Motivation for Parallelization of SymC

SequentialSymC partitions S¢yrr into smaller subsets when the BDD reaches a cer-
tain threshold size. Then, it explores these subsets seglerOnce it reaches an ac-
cept/reject state, according to the existential/univemsantification of a propertysymC

can save time and space by skipping exploration of the re¢kegbartitions. Assume, our
design is error free or the reject state can be reached onheifinal partition. Then we
have to explore all the partitions, which is a time consungraress.

Let n be the number of partitions; the time it takes for partition to traverse fully,
andmax(t;) the maximum time taken by a partition for exploration of itsts space. Then
>, t; is the time taken for full exploration of the system’s stgtace.

Let a; (r;) be the time it takes to reach an accept (reject) state intipartj. For
the rest of the text, we only talk about reject states withosis of generality. Suppose
the partitions are scheduled such that we are reaching jihet state in partitiory, then
rj+ Z{;ll t; is the time taken by the sequential algorithm to reach trextajtate.

Let R = {Py,..., P} be the set of partitions from which one can reach the reject
state andmin(P;) the minimum time taken by a partition to reach the rejecestathen
all partitions are executed in parallel, the time taken &pleration of the whole state
space ignax(t;) and the fastest reachability of the reject state is achievedn(F;). In
the sequential approach it may happen that partitigng R are explored unnecessarily
as they can not reach the reject state. Even if we reach thet refjate, it may not be
the partition which takes the least time to reach the rejeté ghat is explored first. The
explanation of splitting sets into partitions is postpote@dection 4.

In comparison to sequenti&ymcC, the parallel approach has these two main advan-
tages because it requires less memory on each node:

1. It allows faster verification of properties. This is notytrue because of the reduced
memory requirements, but also because the parallel digoiig not sensitive to the
scheduling of partition traversal.

2. The parallel tool can traverse further into large systetmsre the sequential algorithm
fails due to memory exhaustion.

3 Parallelization of the Bounded Property Checking Algorithm

In this section we describe bounded property checking ialfgrBefore getting into the
details of our core algorithms we discuss how transmissi@8Dds and communication
between network nodes is handled.

For BDD transmission we use the available network drives hadDDMP package
of the CUDD library [11]. BDD serialization is performed in lairy form. In binary mode,
the BDD nodes are a sequence of bytes, representing theleandbx, Then-index, and
Else-index in an optimized way. While receiving, dependinglos index information we
can again frame the original BDD. For network communicatienuse TPO++ [12], an
object oriented message-passing library written in C++ profdVIPI (Message Passing
Interface) [13]. TPO++ allows easy transmission of objecits supports STL data types.

The nodes of a cluster computer are categorized into oneemeasti otherwise slave
nodes. First, the master node parses the system descapiiigoroperty specification and
translates them into BDD form. These are basically the ttimsrelation of the system
and the properties’ AR-automata. Once the master node hasaged the BDDs, it dumps
these BDDs onto disk and broadcasts the availability of taesition relation and AR-
automata to the slave nodes, which are waiting for this et@eotcur. After successful
message transmission, the master starts its symbolidstagzsal algorithm, whereas the
slaves will remain in waiting state after loading the BDDsvirdisk. The property check-
ing algorithm for the master continues until the sizeSgf;, reaches the initial threshold
limit. At this point, it storesSqyr on disk and indicates the slaves to load this set and
split it. The main reason for doing this is to reduce the 8pattime and distribute the
splitting effort on all nodes in the network. In detail, thaster node can spliicy, inton
subsets. But this process consumes notable amount of timgphitithg Sy in parallel
yields better results. Depending on the node farkch node splitSq,r and obtains its
subset. We restrict ourselves for better memory balancingrtodes, where. = 2% and
ke{l,2,3,...}.

Fig. 2 illustrates the initial state set distribution algfom. It iteratively splits a state
setS into two parts and drops one of the resulting sets. In the ekddps the subset
that belongs to the node identified by its rank. The left hadé sf Fig. 2 shows the
distribution algorithmgetSubset. It returns the subsef; .« for noderank from setS for
n possible nodes. It calls algorithgplit that partitions a se$ into two disjunct subsets
g andh. An example application ofetSubset(S, 8, 5, Srank) IS Shown on the right side
of Fig. 2. The algorithm iteratekg,(8) = 3 times. First, it splitsS into ¢ and and
updatesS;ak With g and skipsh. Second, the algorithm splitg . and updates ;i with
h and skipsy. Third, it splits.S;an and setsS;ank to g and skipsh. The control flow of this
example is indicated by the bold arrows in the figure.

After the assignment of the state subsets to each node, ddisnwill proceed with
forward state space traversal. Whenever one of the nodestsi¢hie termination condi-
tion, it initiates abortion of the other nodes and optionalidicates the master node to

2 In MPI each node is identified by a unique number called rank.

// get subset for rank with n nodes from set S
getSubset(in: S, n, rank; out: S;,nx)
Srank = S; g
fori=1 ... logy(n) ‘\
Split(srank; g, h), Ki - @
if (rank % 2) S, = g; // skip h for odd rank f P9
else S, = h; // skip g for even rank
rank = rank / 2; g
e ‘
// split state set S into two parts g and h @
split(in: S; out: g, h)

Fig. 2. Algorithm for state set distribution. The left hand side contains the distribaigorithms, an example applica-
tion is shown on the right hand side.

compute the witness/counterexample. The left and righd Isedes of Fig. 3 delineate the
master and slave node computation loops, respectivelytarh@nation condition in the
inner loop is a generalization of the one given in [14] fortsited computing.

4 Splitting

When we work with paralleBymC and the size obqr is small, then many initial steps
of state space traversal are identical to sequeByahC, i.e. Scur can be represented
using a single BDD and partitioning is delayed. Traversaleggrmed until a blow up
in BDD size is detected. Blow up can be detected by measuringizleeof the symbolic
representation ofg,r. After a blow up is detected, we perform state set splittingdul
on the BDD variables representirtg,r. The goal of partitioning is to create small and
relatively balanced partitions. They should be disjoinbiider to avoid the duplication of
work. Since state sets are represented as Boolean functimnmaditioning is based on
Boolean function slicing [4, 15, 5].

We experimented with several splitting algorithms, botthwour own and already
publicized heuristics [15, 16, 11]. Most of the patrtitiogialgorithms are based on split-
ting a Boolean function represented as BDD into two parts d#ipgnon a variable,
i.e. Shannon expansion is applied.flfis a function represented using a BDD ands
one of its variables, theli can be splitintof, = f A x and f; = f A z. The variable is
chosen to balance the sizes of the two resulting functiodd@keep them small. We will
explain the heuristics for selecting a variable below.

4.1 Partitioning Algorithms from Literature

First we discuss the algorithms we considered from refa®iteavy branch subsetting
andshort path subsetting are mentioned in [16]. Theeavy branch subsetting algorithm
computes a dense subset from a BDD. It determines how mamg sted in the function
rooted at each internal node and builds a subset by throwsiag ane of the children of
each node, starting from the root, until the result reactgigem threshold. The child that
is eliminated from the result is the one that contributessfiestates. Whereas ghort path
subsetting, the main idea is that short paths in a BDD give many states @mitiloute few

/I distribute the transition relation and AR-automata | // receive the transition relation and AR-automata
sendTrans(); receiveTrans();
sendAR-Automata(); receiveAR-Automata();

symbolicSimulate) symbolicSimulatg)

N = nodesInCommWorld;
Scurr = Sys.stari\ AR-aut.start;
splitFlag= true;
for i=0 ... k// kisthetime bound
checkAbortCondition();
if ((|Scurr | > threshold)A (splitFlag))
distributeCurrentStateSet();
Scurr = getSubsefcurr, N, rank);
splitFlag= false
/I Compute image of AR-Automata.
Scurr = images r(Scurr);
if (check Universally)
if (Scurr A AR.reject+ false)
reportFailure();
abortSlaveNodes();
if (Scurr A AR.accept= Scurr)
reportAcceptance();
if (check Existentially)
if (Scurr A AR.accept£ false)
reportAcceptance();
abortSlaveNodes();
if (Scurr A AR.reject= Scurr)
reportRejectance();

N = nodesInCommWorld;
waitForCurrentStateSet();
Scurr = getSubseffcurr, N, rank);
/I nisthetime point of the initial partitioning
// and k is the time bound
fori=n..k
checkAbortCondition();
/I Compute image of AR-Automata.
Scurr = imagear(Scurr);
if (check Universally)
if (Scurr A AR.reject+ false)
reportFailure();
abortOtherNodes();
if (Scurr A AR.accept= Scurr)
reportAcceptance();
if (check Existentially)
if (Scurr A AR.accept£ false)
reportAcceptance();
abortOtherNodes();
if (Scurr A AR.reject= Scurr)
reportRejectance();
/I Compute image of system.
Scurr = imager(Scurr);

/I Compute image of system.
Scurr = imager(Scurr);

Fig. 3. Master and slave node main computation loops.

nodes. The algorithm computes the short paths through est#hand extracts the dense
subset by removing the nodes with no short paths through.tfiéese two algorithms
work better for sequentigdymC, i.e. whenever the size &fq,r reaches the threshold
limit we apply one of these two algorithms and first travelsedense subset, keeping the
remaining state space on a stack. These algorithms are of mierest in parallebymC

as they result in unbalanced cluster nodes in terms of memnwdycomputation power
consumption.

The other algorithms areariable digunctive decomposition andgenerative disunc-
tive decomposition from [11]. These algorithms are similar to our algorithmsdansume
more time for decomposition. They try to estimate all thealales’ positive and negative
co-factors and take the best one. The final algorithm [15dgakduction and redundancy
factors into account for giving a better decomposition of alBBut also consumes a
notable amount of time.

4.2 New Splitting Heuristics

Compared to the above algorithms, our first algorithm trieselect a variable for which
its positive and negative co-factors are well balancedraicg to a balancing condition.
If it can not find such a variable, it picks the variable rasgltin the least difference in
the sizes of its positive and negative co-factors. Since agery check for the variable
that satisfies the balancing condition we call this algomigeger decomposition. That

is whenever we find an appropriate variable, we skip the eaptm of the remaining
variables.

selectVariablgin: .S; out: bestVar)
bestDiff =|.S|; // initialize with number of BDD nodes of S
for all z; Il z; € S.support()

balance -}’f[:} ;
/I balancing condition
if (0.75< balance< 1.25)
bestVar =z;;
break;
/I otherwise check if variable is better than current one
diff = abs(|fa, | — | f2,]);
if (diff < bestDiff)
bestDiff = diff;
bestVar =z;;

Fig. 4. Variable selection foeager decomposition.

After partitioning, each node is assigned with its statesstifior symbolic state space
traversal. A very important observation is that after a fesps of traversal, it may happen
that there is a state overlap between network nodes.

Definition 1 Let S be a set represented using a BDD. THef denotes the number of
states inS, which is given by the number of minterms of the BDD.

Definition 2 Let S be asetand, ..., P, C S. Then we define the state overlap
o€0,1] as:

,_MpeS:pe ANk l<ij<nAij}|
Uiz, Pl

Keeping this in mind, we developed the heuristimimal overlap that aims at min-
imizing the state overlap. This should reduce the effornspa the network nodes, as
redundant computations are avoided.

We rely on the fact that the transition relation is conjwediy partitioned. All these
partitions are statically analyzed to find dependenciewédxt the state variables. First,
we determine the number of present state variables thaemdlithe truth value of a next
state variable. Next, we order the state variables acogtdithis dependency count. The
variables with the highest dependency count are selectespfitting. The crucial point
behind theminimal overlap heuristic is that if splitting is done on one of the selected
variables, then image computations in these partitionteaselikely to produce the same
truth values in the dependent next state variables.

Often, the selected variable can not partitieyy,, into balanced subsets. In order to
overcome this problem, the best-cost algorithm [15] isechMvith the set of selected
variables. It returns one variable for achieving a reashyraddanced partitioning.

Of course, in the worst case the minimal overlap conditiold$i@nly for one or
few traversal steps, as many other conditions can changealhe of state variables.
For example, the variable with the maximal dependency coantdepend on an input

(1)

variable disjunctively. The selected set of variables i$hier scrutinized to avoid such
trivial situations.

5 Experimental Results

We performed our experiments on the Kepler cluster at thedydsity of Tuebingen. This
cluster contains 128 computing nodes, each consistingalf@h0 MHz Pentium 3 pro-
cessors with 1 GB of memory. The communication between nodesists of a Myrinet
1.28 GBit/s switched LAN. The SCore Cluster System Softwarseésidor communica-
tion between network nodes. We conducted our experimerngsime of the circuits from
the ISCAS89 benchmarks, and a model of the holonic produsiistemnh?2 described
in [9]. We compared the results of paral®ymC and sequentigbymC.

Checked properties For circuits from the ISCAS89 benchmarks we check for reacha-
bility of a certain state. In the holonic production system eheck for consumption of a
workpiece. The properties are specified with time bounds.

Partitioning Algorithms Since some of the partitioning algorithms have similar abar
teristics, for exampleariable digunctive decomposition and generative digunctive de-
composition, we performed our experiments with a subset of the algostepecified in
section 4. Due to the reason given in section 4.1, none oféhsalapproximation tech-
nigques have been used for the parallel versid®yhC. The heuristic from [15] is labeled
Haifa decomposition.

Fig. 5 shows the results of running the mentioned circuipsiritioned sequenti@ymC
and parallelSymC. The first column indicates the circuit names. The coluhrashold
limit indicates that whenever the size &, reaches this limit, the given splitting al-
gorithm is called. The third column represents the time lbosipecified in a property.
Columntime specifies the time in seconds taken by an approach to reatimiaéound
or to get results. For parall@ymC, we also mention the number of nodes used in the
cluster computer.

Discussion In Fig. 5 the runtimes marked with bold text denote the spéttalgorithm
yielding the best result. For circuith2, the parallel approach using 16 nodes can not
complete traversal in one hour due to the huge state ovedapelen network nodes.
However, with 32 nodes parall8lymC decreases the verification time by a factor from
3 to 5. For the larger ISCAS89 circuisd512 ands4863 sequentiaBymC was not able

to produce any results with most splitting algorithms, veaer paralleSBymC traversal
completes and we obtain results.

6 Conclusion and Future Work

In this paper we presented a parallel version of the boundgzepty checking todbymC
and successfully tested big designs with large time bouhids.idea of the approach is
to partition the state space upon reaching a threshold &mik assign traversal of the

Threshold | Time Time taken by nr. of Time
Circuit Limit Bound Partitioning Algorithm nodes
16 32 Seq.
nh2 50000 300 VarDisjDecomp mtaoh 204.06 741.95
MinimalOverlap mtaoh 197.38 539.01
EagerDecomp mtaoh mtaoh 591.84
HaifaDecomp mtaoh 208.5 902.05
HeavyBranchSubset 452.21
1000 VarDisjDecomp mtaoh 375.77 mtaoh
MinimalOverlap mtaoh 379.74 1273.29
EagerDecomp mtaoh mtaoh 2489.54
HaifaDecomp mtaoh 272.25 23323
HeavyBranchSubset 1242.65
2000 VarDisjDecomp mtaoh 450.5 mtaoh
MinimalOverlap mtaoh 566.15 1738.11
EagerDecomp mtaoh mtaoh 3195.98
HaifaDecomp mtaoh 357.29 3074.1
HeavyBranchSubset 1824.18
sI512° | 50000 100 VarDisjDecomp 214625 | 2103.45 | mtaoh
MinimalOverlap 2135.46 2083.24 mtaoh
EagerDecomp 2772.98 2750.55 mtaoh
HaifaDecomp 2450.75 2363.23 mtaoh
HeavyBranchSubset mtaoh
s1269 | 5000 10 VarDisjDecomp 30.34 21.74 mtaoh
MinimalOverlap 41.79 22.88 168.92
EagerDecomp 36.01 31.67 307.81
HaifaDecomp 32.32 22.58 182.67
HeavyBranchSubset 213.38
s1423 | 50000 10 VarDisjDecomp 215.12 203.69 519.35
MinimalOverlap 243.79 233.02 503.5
EagerDecomp 245.73 224.2 746.25
HaifaDecomp 303.73 293.88 503.62
HeavyBranchSubset 585.48
s4863 | 20000 5 VarDisjDecomp 952.22 813.69 mo
MinimalOverlap 714.49 579.86 1786.88
EagerDecomp mo mo mo
HaifaDecomp 967.95 851.39 mo
HeavyBranchSubset 2802.77

Fig. 5. Comparison of paralleébymC with partitioned sequenti@ymC, wheremtaoh denotes measurement terminated
after one hour andcho denotes memory overflow.

subsets to network nodes. The parallel algorithm has deadvantages. It enables the
verification of larger models than those with the regularpeoallel version. Sequential
SymC fails for these designs because it often encounters state gxplosion early on in
the computation, after which it could not make much progdessto memory limitations.
However, the reduced memory requirements for the clustéesian paralleSymcC still
allow progress in the traversal process. Therefore, it e tbfinish large circuits. The
parallel approach can exploit any network size and itszatiion of network resources
make it suitable for solving very large verification probkemlso, because parall8ymC

is not sensitive to the traversal scheduling order of parts, the termination condition is
found as soon as possible.

Our current focus is on state overlap reduction. In this weelkeduced the state over-
lap between network nodes using tmenimal overlap algorithm for state set splitting.
Experiments show that this technique efficiently reducesotrerlap for certain circuits.
However, in general the overlap may still pursue after a fevations. In order to dynam-
ically avoid overlap, each node dumps iHg,r everyn time steps onto the disk. Later
nodes will remove the states already visited at time stbp other nodes. As of the time
of writing this paper, we are ready with the basic implemgoteand tested a few designs.
Early results look very promising.

Currently, we partitiorber into smaller subsets and distributed them among network
nodes. We would like to apply the same principle to the tteorsirelation, i.e. we dis-
tribute restricted parts of the transition relation to tledwork nodes. In contrast to [15]
we use network drives for BDD transmission. In the future wk evialuate using MPI
directly for BDD transmission.

References

1. Bryant, R.: Graph-Based Algorithms for Boolean Function ManiputatiBEE Transactions on Compute®s35
(1986) 677-691

2. Bryant, R.E.: Symbolic boolean manipulation with ordered binarysitat diagrams. ACM Computing Surveys
24(3)(1992) 293-318

3. Biere, A, Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Boeddmodel checking. In Zelkowitz, M., ed.:
Highly Dependable Software. Volume 58 of Advances in Computersdéwic Press (2003)

4. Narayan, A., Isles, A.J., Jain, J., Brayton, R.K., Sangiow&mtentelli, A.L.. Reachability analysis using
partitioned-ROBDDs. In: 1997 IEEE/ACM International ConferenceGAD, ACM and IEEE Computer So-
ciety Press (1997) 388-393

5. Sahoo, D., lyer, S.K., Jain, J., Stangier, C., Narayan, A., Dill,, Emerson, E.A.: A partitioning methodology
for BDD-based verification. In Hu, A.J., Martin, A.K., eds.: Folnvethods in Computer-Aided Design, Fifth
International Conference. Volume 3312 of Lecture Notes in Computienge., Springer (2004) 399-413

6. Ruf, J., Peranandam, P.: Bounded property checking with syenéimulation. In: Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen Sysiemen, GI/ITG/GMM Workshop,
Shaker Verlag (2003) 209-218

7. Peranandam, P.M., Weiss, R.J., Ruf, J., Kropf, T., RosénatieDynamic guiding of bounded property checking.
In: IEEE International High Level Design Validation and Test WorksB604 (HLDVT 04). (2004)

8. McMillan, K.: Symbolic Model Checking: An Approach to the State ExosProblem. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA (1992)«S-92-131.

9. Ruf,J., Weiss, R.J., Kropf, T., Rosenstiel, W.: Modeling anchfdrverification of production automation systems.
In et. al., E., ed.: Integration of Software Specification Techniquedgpplications in Engineering. Volume 3147
of Lecture Notes in Computer Science. Springer (2004) 541-566

10. Ruf, J., Hoffmann, D.W., Kropf, T., Rosenstiel, W.: Simulatiuided property checking based on a multi-valued
AR-automata. In Nebel, W., Jerraya, A., eds.: Design, AutomatichTast in Europe 2001, IEEE Press (2001)
742-748

11. Somenzi, F.: CUDD: CU decision diagram package, release B4t ®@: / / vl si . col or ado. edu/ ~f abi o/
CUDD (2004)

12.

13.

14.

15.

16.

Grundmann, T., Ritt, M., Rosenstiel, W.: TPO++: An object-oriemedsage-passing library in c++. In: 2000
International Conference on Parallel Processing, IEEE Computéet$¢2000) 43-50

William Gropp, E.L., Skjellum, A.: Using MPI - Portable Parallel Preogming with the Message Passing Inter-
face. 2nd edn. MIT Press (1999)

Ruf, J., Peranandam, P.M., Kropf, T., Rosenstiel, W.: Bedrmtoperty checking with symbolic simulation. In:
Forum on Specification and Design Languages 2003. (2003)

Heyman, T., Geist, D., Grumberg, O., Schuster, A.: Achievaagedility in parallel reachability analysis of very
large circuits. In Emerson, E.A., Sistla, A.P., eds.: Computer Aidedfivation, 12th International Conference.
Volume 1855 of Lecture Notes in Computer Science., Springer Vera@0)220-35

Ravi, K., McMillan, K.L., Shiple, T.R., Somenzi, F.: Approximatiand decomposition of binary decision dia-
grams. In: 35th Conference on Design Automation, ACM Press (1498Y450

